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Introduction

To control field variability in plant breeding field trials, 
some kind of blocking is almost always used (John and 
Williams 1995). As the number of treatments is normally 
high, designs with incomplete blocks such as α-designs 
(Patterson and Williams 1976) or partially replicated 
(p-rep) designs (Cullis et al. 2006; Williams et al. 2011, 
2014) are often preferred. The same incomplete blocking 
structure is often used in laboratory experiments, e.g., if 
not all samples can be measured on one microtiter plate or 
within a day. If it is plausible to assume that block effects 
are randomly drawn from some parent population of pos-
sible block effects or if there is an underlying randomiza-
tion process to distribute treatments to blocks (Calinski and 
Kageyama 2000), taking blocks as a random factor allows 
the recovery of inter-block information (Yates 1940). For 
known variances, such a combined analysis weighting 
inter-block and intra-block treatment information is best. 
For better readability, we denote treatment information as 
simply as ‘information’ throughout the rest of the paper 
because our main aim is the estimation of treatment effects. 
Also, for brevity we denote an analysis assuming random 
block effects and hence recovering inter-block information 
as combined analysis. Weights in the combined analysis are 
based on estimated variances. Naïve estimates of standard 
errors for treatment effects from this combined analysis 
treat variance estimates as if they were known constants. 
The problem is that these weights will underestimate the 
true standard errors because errors in estimating the vari-
ances, and hence errors in the weights for the inter-block 
and intra-block information, are ignored (Mead et al. 
2012). In particular, when the number of blocks is small 
and the block variance is large, estimates of the block vari-
ance may be so imprecise that weights are not determined 
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with sufficient accuracy for recovery of inter-block infor-
mation to be worthwhile (Casella 2008; Mead et al. 2012).

The problem in practice is to decide when it is worth-
while to recover the inter-block information. Clearly, the 
naïve estimates of precision are not a helpful guide in this 
context; it can be shown that these naïve estimated stand-
ard errors for the combined analysis will always be smaller 
than the estimated standard errors for intra-block analysis 
(Kenward and Roger 1997), even when recovery is not 
worthwhile. To avoid inefficient combined analysis, Mead 
(1988) and van Eeuwijk (1995) proposed that at least 10 
degrees of freedom should be required for estimation of the 
block variance.

Based on the distributional properties of the combined 
treatment effect estimator for balanced incomplete block 
(BIB) designs, Graybill and Deal (1959) suggested that for 
sample size exceeding 10 an estimate from combined anal-
ysis is preferable. Noting that for BIB designs the relative 
intra- and inter-block information is split according to the 
ratio σ 2

b E/σ
2(1− E), where E is the efficiency factor and 

σ 2
b  and σ 2 are the block and error variances, respectively, 

Mead et al. (2012; Chapter 9) proposed that at least 4 % of 
the information is needed between blocks. So according to 
this rule, recovery is worthwhile when the efficiency factor 
is low (below 0.8) and the block-to-error variance ratio is 
less than 4. The efficiency factor E for a BIB design given 
by (�t)

/

(rk), where � is the number of times two treatments 
occur together in a block, and t, r, and k are the number 
of treatments, replicates and plots per block, respectively. 
It is the ratio of the variance of a treatment difference for 
a BIB design and the variance of a difference for a rand-
omized complete block design with the same number of 
experimental units and the same error variance (John and 
Williams 1995; Chapter 2). In practice this means that the 
inter-block analysis would be used only if block sizes are 
between two and four and the reduction of error variance 
due to blocking is small (Mead et al. 2012).

For other designs, the decision on recovery of inter-
block information is more difficult (Mead et al. 2012). 
Kackar and Harville (1984) proposed a general adjustment 
of the standard error estimates based on a first-order Tay-
lor expansion, which accounts for the errors in weights and 
usually leads to an inflation of the standard error estimates 
compared to naïve estimates from a combined analysis 
assuming known variances. This method was also used by 
Kenward and Roger (1997) in their procedure for small-
sample inference on fixed effects in mixed models, which 
has become very popular after its implementation in some 
mixed model packages. The authors proposed to recover 
the inter-block information only when the Kackar–Harville 
adjusted standard errors of treatment differences (s.e.d.) 
are smaller than the corresponding estimated s.e.d. from an 
analysis with fixed block effects. While this approach has 

great practical appeal, its empirical performance does not 
seem to have been systematically investigated.

This paper pursues the approach of trying both analyses 
(with and without recovery) using a mixed model package 
with the residual maximum likelihood approach (REML; 
Patterson and Thompson 1971) as the estimation method 
for the variances and then picking one of the analyses 
based on a suitable decision rule designed to identify the 
smaller s.e.d. We will evaluate the decision rule using the 
Kackar–Harville adjustment and alternative decision rules. 
We considered a series of small single-trial designs from 
sugar beet and simulated single-trial resolvable incomplete 
block designs and partially replicated designs. The “Mate-
rials and methods” section starts with a description of the 
motivating series of sugar beet trials and then gives an 
overview of our simulation approach. Details concerning 
the model for simulating and analysing data for the inves-
tigated designs and nine different decision rules are given. 
Then we compare these rules based on the mean squared 
error of treatment differences (MSED) and the probability 
of correct model selection within the simulation. The paper 
ends with a discussion of results and our main conclusion.

Materials and methods

Motivating example: series of sugar beet plant breeding 
trials

The series comprised 285 trials from 21 locations. Within 
a trial one out of 26 subgroups each with 32 test geno-
types and four checks was allocated to plots according to 
an α-design with two replicates of six incomplete blocks of 
size six. Separate analyses for corrected sugar yield were 
performed for each trial using random (combined analysis) 
or fixed (intra-block analysis) block effects. Both analyses 
used fixed effects for replicate and genotype. For each trial 
the size of variance estimates and the average estimated 
standard error were calculated. For the combined analy-
sis we also calculated corrected standard errors using the 
Kenward–Roger approximation. To compare both models 
we calculated the average correlation of differences of test 
genotype estimates from different trials. For this purpose, 
we correlated least square mean differences of test geno-
types from a single trial against mean differences across 
all other trials with the same subgroup of test genotypes. 
The second analysis corresponds to a two-stage analysis 
ignoring weights from the first stage. As the data are nearly 
balanced according to this subgroup of test genotypes, we 
expect that the correlation with a one-stage analysis is quite 
high (Möhring and Piepho 2009). We assume that a more 
precise estimate of test genotype differences results in a 
higher correlation.
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Overview of simulation approach

On average, results from the motivating example show a 
clear preference for a combined analysis, but results vary 
from trial to trial. This raises the question whether there 
is a method to distinguish between trials where the com-
bined analysis is better and trials where the intra-block 
analysis is better. We, therefore, started with a simula-
tion taking the design and the median variance parameter 
values from the motivating example into account (sce-
nario 1). Because results from this simulation are quite 
simple—most decision rules always select the preferred 
combined analysis—we varied our input variables and 
concentrated on cases, where the decision was less clear. 
Therefore, we performed additional simulation studies 
using different experimental designs (α-designs and p-rep 
designs). For each study we used a range of different sce-
narios. Scenarios varied in given number of blocks, block 
size, and the ratio of variance values. Data generation and 
analyses were done in SAS. Designs were created using 
the software package CycDesigN 5.1 (VSN International; 
http://www.vsni.co.uk/; Williams et al. 2014). Simula-
tion studies comprised n = 5000 or n = 1000 datasets for 
each scenario. Each dataset was subjected to two analy-
ses that differed only in the assumption regarding the 
block effects. The first model assumed block effects as 
fixed, and the second took block effects as random. For 
both analyses the MSED of all pairwise treatment differ-
ences was calculated (see section “Evaluation criteria” for 
details. Furthermore, for each dataset nine different rules 
were used to decide whether the analysis with fixed or 
random block effects should be used for the dataset. For 
each rule and each simulated scenario the resulting MSED 
was averaged across datasets. Additionally, the probabil-
ity of making the right decision (i.e., selecting the more 
accurate of the two alternative analyses) was calculated as 
an evaluation criterion.

Data simulation

Observations for all datasets were simulated according to 
the following model:

where yijk is the response of the i-th treatment in the j-th 
replicate and k-th block, µ is the general intercept, rj is the 
j-th replicate effect, bjk is the k-th block effect within the 
j-th replicate, ti is the i-th treatment effect, and eijk is the 
plot error corresponding to the response yijk. The design 
effects bjk and eijk were drawn from normal distributions 
with homogeneous variances. For simplification, and with-
out loss of generality, all treatment and replicate effects  
(ti and rj) were set to zero.

(1)yijk = µ+ rj + bjk + ti + eijk ,

Experimental field designs and scenarios of simulation 
studies

Our simulation study started with a scenario which is quite 
similar to the motivating example (scenario 1). We then 
concentrated on worst-case scenarios where decision rules 
varied in their preferred analysis and the intra-block anal-
ysis can be a better option than the inter-block analysis. 
We generated a number of common α-designs and p-rep 
designs using CycDesigN 5.1 (Table 1). In our simulation 
studies we varied the following parameters: the number of 
blocks (scenario 2), the block sizes (scenario 3), and the 
block-to-error variance ratio (scenario 4). For the latter we 
varied the variance parameter values, but because only the 
ratio of block and error variance influences the relative per-
formance of combined and intra-block analysis, we mainly 
just reported the ratio of block and error variances. For 
tables reporting MSED values we added the information 
about the error variance.

To concentrate our simulation on the most critical cases 
for combined analysis, we modified parameters in scenar-
ios 2–4. As long as we were not varying the correspond-
ing parameter value, we reduced the number of blocks 
to four. This is the minimum possible number of blocks. 
We used a block size of 12 because we expected that esti-
mates for error variance are more stable in this case. Addi-
tionally, we assumed the highest block-to-error variance 
ratio found in our motivating example (we used a ratio of 
5). The larger the ratio, the less benefit will accrue from 
using inter-block information (Mead et al. 2012). Addi-
tionally, as the absolute value of variances only affects 
the absolute value of the MSED, we varied the block vari-
ance parameter value and set the error variance to an arbi-
trary value of 40 for scenarios 2–5. The strategy of fixing 
the error variance and varying the block variance has the 
advantage that MSED values for different variance ratios 
are comparable. The efficiencies for our non-BIB designs 
reported in Table 1 were taken from CycDesigN 5.1. For 
the α-designs the number of treatments is half the num-
ber of experimental units. Therefore, designs also varied 
in the number of treatments and the number of plots. For 
p-rep designs we used 48 treatments and 72 experimental 
units. As this study aims at single-trial analysis, we used 
just one trial of each of the p-rep designs generated for 
four locations (Williams et al. 2011). The allocation of 
treatments to experimental units was randomized for each 
dataset.

As the block model for both designs is identical, we 
subjected each dataset to intra-block analysis and com-
bined analysis. For combined analysis we adjusted the 
degrees of freedom and standard errors with and with-
out the method of Kenward and Roger (1997). The rep-
licate effect was taken as fixed throughout. Note that in 

http://www.vsni.co.uk/
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the α-designs, replicates are complete, so no inter-repli-
cate information exists and hence no information could 
be recovered by taking replicates as random. In case of 
p-rep designs, there are no complete replicates and recov-
ering inter-replicate treatment information raises the 
same question for replicates, which was discussed for 
incomplete blocks. We simulated no replicate effects and 
ignored the inter-replicate information in both models, 
and we think that this does not affect the relative perfor-
mance of our two models with respect to the assumption 
made for blocks.

Decision rules

We used nine different rules for deciding whether an intra-
block analysis or a combined analysis should be performed 
(Table 2). Rule 1 and Rule 2 are invariant to the analysed 
dataset. Rule 3 to Rule 7 are based on readily computable 
criteria used in the literature, and Rule 8 and Rule 9 are 
based on a simulation approach.

Rule 1 ignores inter-block information throughout. Rule 2 
always recovers the inter-block information. Rule 3 to Rule 9 
in principle allow both analyses. Rule 3 uses the Kackar and 

Table 1  Overview of considered designs and scenarios

* Scenarios 2 a, 3 e and 4 e are identical
§ The ratio is 812 to 2276 which are the median values from the motivating example

Design Scenario Number of Ratio of block-to- 
error variance

Efficiency factor

Blocks Experimental  
units per block

Obser-vations Replicates Treatments

α-Design 1 12 6 72 2 36 0.3568§ 0.7778

α-Design 2 a* 4 12 48 2 24 5 0.9200

α-Design 2 b 6 12 72 2 36 5 0.8974

α-Design 2 c 8 12 96 2 48 5 0.8868

α-Design 2 d 10 12 120 2 60 5 0.8765

α-Design 2 e 12 12 144 2 72 5 0.8667

α-Design 3 a 4 4 16 2 8 5 0.7778

α-Design 3 b 4 6 24 2 12 5 0.8462

α-Design 3 c 4 8 32 2 16 5 0.8824

α-Design 3 d 4 10 40 2 20 5 0.9048

α-Design 3 e* 4 12 48 2 24 5 0.9200

α-Design 4 a–f* 4 12 48 2 24 0.05–50 0.9200

p-rep 5 a 3 24 72 1.5 48 5 0.6425

p-rep 5 b 6 12 72 1.5 48 5 0.8409

p-rep 5 c 9 8 72 1.5 48 5 0.8991

p-rep 5 d 12 6 72 1.5 48 5 0.9292

Table 2  Decision rules of selecting combined analysis

s.e.d. standard error of treatment differences, MSED mean square error of treatment differences

Rule Condition for assuming random block effects (combined analysis)

Rule 1 Never

Rule 2 Always

Rule 3 If corrected average s.e.d. of combined analysis is smaller

Rule 4 If block variance estimate is positive

Rule 5 If block variance estimate is positive and if corrected average s.e.d. of combined analysis is smaller

Rule 6 If there are at least than ten degrees of freedom for estimation the block variance

Rule 7 If the efficiency factor is smaller than 0.8 and the block-to-error variance ratio is smaller than 4

Rule 8 If the simulated probability for using the combined analysis is larger than 0.5

Rule 9 If the simulated average MSED of the combined analysis is the smallest one
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Harville adjustment for s.e.d. estimation. Rule 6 uses the deci-
sion rule of Mead (1988) and van Eeuwijk (1995). Rule 7 
uses for all designs the decision rule that Mead et al. (2012) 
proposed for a BIB design. Rule 4 and Rule 5 are extensions 
to Rule 2 and Rule 3, respectively, requiring that in cases of a 
zero block variance estimate the user switches to an intra-block 
analysis. The motivation for these rules is the following: To our 
knowledge most mixed model software packages constrain 
very small variance estimates to a boundary value of zero. This 
is also true for the package we used (SAS, PROC MIXED). In 
our simulation we assume a block variance to be zero when-
ever the program constrained the variance to zero. Constrain-
ing a block variance estimate to zero effectively removes block 
effects from the model and therefore results in the smallest pos-
sible estimated average s.e.d. (Mead et al. 2012); furthermore, 
a zero estimate for the variance may indicate that a model that 
allows negative variances is more appropriate (Nelder 1954). 
As it is uncommon to have no block effects, our analysis reverts 
to fixed effects for blocks as a backup against underestimation 
of the error term and an invalid analysis. Rule 8 and Rule 9 are 
based on a simulation as described in the next sub-section.

Simulation for Rule 8 and Rule 9

The basic idea of Rule 8 and Rule 9 is to use information 
from a given dataset to (1) simulate comparable data with 
known true treatment differences, (2) analyse them with 
models assuming fixed or random block effects and (3) 
select the better model. Therefore, for a given dataset, vari-
ance estimates are computed using model (1). These vari-
ance estimates are then used for a further simulation, where 
in each simulation run data are created based on model (1), 
taking block effects as random. The same two analyses with 
either fixed or random block effects are then performed. For 
each simulation run and each analysis, the MSED is calcu-
lated. If for a simulation run the block variance is estimated 
to be zero, both rules use the MSED of the intra-block analy-
sis. These MSED values are averaged across simulation runs 
for a dataset. Rule 9 takes the model for the analysis with 
the smaller average MSED. Additionally, we counted the 
number of simulation runs, where each analysis was selected 
based on the MSED. Rule 8 decides to take the model for the 
analysis which is selected the most often.

Note that here we use these two rules on data which are 
themselves simulated, so overall, our study involves two lev-
els of simulation: (1) an outer simulation that generates data-
sets for a given design and scenario and (2) an inner simulation 
when applying Rule 8 and Rule 9 to each dataset from level (1).

Evaluation criteria

Based on the decisions taken using Rule 1 to Rule 9, the 
MSED and whether the truly better model was selected are 

assessed for each dataset. As we simulated no treatment 
effects, the MSED is the average of the squared estimated 
treatment differences. The MSED values per dataset were 
then averaged across datasets for each design and scenario. 
By “truly better model” we mean that for a given dataset the 
MSED for that model is smaller than for the other model. 
This does not imply that the better model is the best possi-
ble model, as there may be yet better models than the ones 
considered for analysis. Smaller average MSED values and a 
higher probability indicate better rules for deciding whether 
it is worthwhile to recover inter-block information.

Results

Motivating example

Using combined analysis, the block-to-error variance ratio 
varied between 0 and about 5 with a median ratio of 0.39. 
About 17 and 87 % of the ratios were smaller than 0.05 
and 1.25, respectively. The block variance estimates were 
more variable (values between 0 and 13,951 with a median 
of 812) than the error variance estimates (values between 
474 and 10,702 with a median of 2276). In 39 trials the 
block variance estimate was constrained to zero. As each 
trial comprised 12 blocks there were 10 degrees of freedom 
for estimating the block variance. Aside from the variabil-
ity of the ratio of variance estimates and the small number 
of blocks, the estimated standard error of treatment differ-
ences for the combined analysis with and without using 
the Kacker–Harville approximation was always smaller 
than for the intra-block analysis for all 285 trials. The aver-
age correlation of differences of treatment estimates from 
different trials was 0.4130 for the combined analysis and 
0.4022 for the intra-block analysis, but for 111 out of 285 
trials the intra-block analysis shows the higher correlation. 
No obvious effect of the size of variances or their ratio was 
detectable. Both the average correlation and the estimated 
standard error tended to favour the assumption of random 
block effects across all trials. This is in accordance with 
results from using the same design and the median val-
ues for block and error variance parameters in a simula-
tion study (scenario 1). In 79.41 % of the simulation runs 
a combined analysis was better. The MSED for non-zero 
block variance estimates was 2672.64 compared to 2958.56 
for the intra-block analysis (5000 simulation runs). All 
decision rules except of Rule 1 selected the combined anal-
ysis in all simulation runs.

Simulation results

Results from our simulation (scenarios 2–5) are given for 
two separate cases: (1) when the block variance estimate is 
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constrained to zero and (2) when it is larger than zero. The 
rationale for this separation is that constraining the block 
variance estimate to zero in a combined analysis de facto 
drops the block effect from the model. As it is uncommon 
to have no real block effects, we assume that an estimate 
constrained to zero only reflects estimation error. Using 
an intra-block analysis can be seen as a fall-back option in 
these situations that makes sure the block effects stay in the 
model.

Results for α‑designs

The probability that an intra-block analysis is best is identi-
cal to the probability that Rule 1 selects the better model. 
In general, this probability decreases with increasing num-
ber of blocks (Table 3), decreasing block size (Table 9), 

and decreasing block-to-error variance ratio (Table 4). For 
a given scenario and a given number of blocks, Rule 1 to 
Rule 6 lead to the same decision for all simulated data sets 
(Tables 5, 10, 11). The probability for selecting the intra-
block analysis increases with decreasing number of blocks 
(scenarios 2) for Rule 3, Rule 5, Rule 6, Rule 8, and Rule 9 
(Table 5). For increasing block-to-error variance ratio (sce-
nario 4), the probability of selecting intra-block analysis 
increases for Rule 8 and Rule 9 (Table 10). Furthermore, 
for increasing block size (scenario 3), the probability of 
selecting intra-block analysis increases for Rule 7 to Rule 9 
(Table 10). Therefore, in principle all decision rules which 
potentially allow the selection of both models switch to 
a combined analysis, if this analysis tends to be better. If 
the truly better model varies between simulation runs, this 
does not affect the probabilities that a combined analysis is 

Table 3  Probability of selecting the better model for nine decision rules and scenario 2 (varying number of blocks) depending on the value of 
the block variance estimate (zero or positive)

All scenarios used an α-design with block size of 12, and a block-to-error variance ration of 5. Table 5 also looks at scenario 2, but considers the 
probability of selecting an intra-block analysis

Scenario Estimate of block 
variance

Number of Probabilities for the nine different rules

Simulations Blocks 1 2 3 4 5 6 7 8 9

2 a Positive 4829 4 0.4813 0.5187 0.4813 0.5187 0.4813 0.4813 0.4813 0.5250 0.4999

0 171 4 0.6024 0.3976 0.3976 0.6024 0.6024 0.6024 0.6024 0.6024 0.6024

2 b Positive 4987 6 0.4738 0.5262 0.4738 0.5262 0.4738 0.4738 0.4738 0.5242 0.5185

0 13 6 0.77 0.23 0.23 0.477 0.77 0.77 0.77 0.77 0.77

2 c Positive 5000 8 0.4496 0.5504 0.5504 0.5504 0.5504 0.4496 0.4496 0.5496 0.5374

2 d Positive 5000 12 0.4125 0.5875 0.5875 0.5875 0.5875 0.5875 0.4125 0.5875 0.5867

2 e Positive 5000 24 0.3796 0.6204 0.6204 0.6204 0.6204 0.6204 0.3796 0.6204 0.6204

Table 4  Probability of selecting the better model for nine decision rules and scenario 4 (varying block-to-error variance ratio) depending on the 
value of the block variance estimate (zero or positive)

All scenarios used an α-design with four blocks of size of 12. Table 11 also looks at scenario 4, but considers the probability of selecting the 
truly better method

Scenario Estimate of 
block variance

Ratio of block-to-
error variance

Number of 
simulations

Probabilities for the nine different rules

1 2 3 4 5 6 7 8 9

4 a Positive 0.05 497 0.2034 0.7966 0.2034 0.7966 0.2034 0.2034 0.2034 0.7923 0.7666

0 0.05 503 0.4053 0.5947 0.5947 0.4053 0.4053 0.4053 0.4053 0.4053 0.4053

4 b Positive 0.125 571 0.2680 0.7320 0.7320 0.2680 0.2680 0.2680 0.2680 0.7303 0.6953

0 0.125 429 0.4918 0.5082 0.5082 0.4918 0.4918 0.4918 0.4918 0.4918 0.4918

4 c Positive 0.5 797 0.3676 0.6324 0.3676 0.6324 0.3676 0.3676 0.3676 0.6198 0.4780

0 0.5 203 0.5369 0.4631 0.4631 0.5369 0.5369 0.5369 0.5369 0.5369 0.5369

4 d Positive 1.25 886 0.4413 0.5587 0.4413 0.5587 0.4413 0.4413 0.4413 0.5485 0.4480

0 1.25 114 0.6316 0.3684 0.3684 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316

4 e Positive 5 4829 0.4813 0.5187 0.4813 0.5187 0.4813 0.5187 0.4813 0.5250 0.4999

0 5 171 0.6024 0.3976 0.3976 0.6024 0.6024 0.3976 0.6024 0.6024 0.6024

4 f Positive 50 999 0.4955 0.5045 0.4955 0.5045 0.4955 0.4955 0.4955 0.5145 0.5065

0 50 1 1 0 0 1 1 1 1 1 1
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selected (results not shown). For larger numbers of blocks, 
an intra-block analysis is sub-optimal (Rule 1 and Rule 7 
for scenario 2 e). Using an intra-block analysis seems to 
be better if the block variance estimate is zero (scenarios 
2a, 3 and 4). Additionally, Rule 8 shows higher probabili-
ties of selecting the better model and smaller MSED val-
ues than Rule 9 (Tables 3, 6). Therefore, Rule 4, Rule 5 or 
Rule 8 optimizes the probability of selecting the truly bet-
ter model. We expect that a decreasing block variance and 
an increasing number of blocks tend to favour a combined 
analysis. Therefore, intra-block analysis is assumed to be 
best for designs with four blocks, a large block size of 12, 
and a relatively high block-to-error variance ratio. Rule 4 
maximizes the probability to select the better model for 
non-zero block variance (Tables 3, 4, 9). Rule 5 and Rule 8 
have the advantage that they potentially allow to select both 
models, the combined analysis and the intra-block analy-
sis, and hence fare a bit better in borderline cases. Evalu-
ating the MSED shows comparable results. But the differ-
ences between decision rules are smaller because average 
MSED values for the analyses with and without recovery 
are more similar. For scenarios with more than four blocks, 
the combined analysis shows both higher probabilities of 
selecting the better model compared to intra-block analysis 

and the smallest average MSED values. For four blocks and 
a block-to-error variance ratio of 5 or 50, the intra-block 
analysis has the smallest MSED (Table 12) but a smaller 
probability of selecting the better model compared to the 
combined analysis. MSED values for decisions rules which 
potentially can select both models are often intermediate 
between the MSED values of intra-block or combined anal-
ysis or identical to one of them.

Results for p‑rep designs

For p-rep designs the same tendencies for increasing block-
to-error variance ratio and increasing the number of blocks 
were observed (data not shown). If there is a sufficient 
number of blocks and treatments per block, the combined 
analysis is preferred. We, therefore, just present scenarios 
with a high block-to-error variance ratio of 5. Changing 
the number of blocks for a given set of 48 treatments and a 
given number of 72 experimental units produces less clear 
results (Tables 7, 13). As the block size varies, the num-
ber of blocks and the number of replicated treatments per 
block vary too. While for positive block variance estimates 
and scenarios 5 a–c the combined analysis (Rule 4) shows 
both higher probabilities of selecting the better model and 

Table 5  Probability of 
selecting intra-block analysis 
for nine decision rules and 
scenario 2 (varying number of 
blocks) depending on the value 
of the block variance estimate 
(zero or positive)

All scenarios used an α-design with block size of 12, and a block-to-error variance ratio of 5
§ These are exact 0s and 1s

Scenario Estimate of block 
variance

Number of Probabilities for the nine different rules§

Simulations Blocks 1 2 3 4 5 6 7 8 9

2 a Positive 4829 4 1 0 1 0 1 1 1 0.1814 0.8233

0 171 4 1 0 0 1 1 1 1 1 1

2 b Positive 4987 6 1 0 1 0 1 1 1 0.0040 0.0578

0 13 6 1 0 0 1 1 1 1 1 1

2 c Positive 5000 8 1 0 0 0 0 1 1 0.0032 0.0454

2 d Positive 5000 12 1 0 0 0 0 0 1 0 0.0009

2 e Positive 5000 24 1 0 0 0 0 0 1 0 0

Table 6  MSED for nine decision rules and scenario 2 (varying number of blocks) depending on the value of the block variance estimate (zero 
or positive)

All scenarios used an α-design with block size of 12, and a block-to-error variance ratio of 5. For simplicity, we dropped the presentation of 
MSED for simulation runs with zero block variance estimates for six blocks because the number of these simulations is very low

Scenario Estimate of block 
variance

Number of Average MSED for the nine different rules

Simulations Blocks 1 2 3 4 5 6 7 8 9

2 a Positive 4829 4 43.78 43.99 43.78 43.99 43.78 43.78 43.78 44.00 44.01

0 171 4 43.92 45.96 45.96 43.92 43.92 43.92 43.92 43.92 43.92

2 b Positive 4987 6 44.56 44.53 44.56 44.53 44.56 44.56 44.56 44.53 44.54

2 c Positive 5000 8 45.17 45.10 45.10 45.10 45.10 45.17 45.17 45.10 45.11

2 d Positive 5000 12 45.50 45.35 45.35 45.35 45.35 45.35 45.50 45.35 45.35

2 e Positive 5000 24 46.07 45.88 45.88 45.88 45.88 45.88 46.07 45.88 45.88
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smaller MSED values, for scenario 5 d the intra-block anal-
ysis shows better values of the evaluation criteria (Tables 7, 
13). Again, Rule 3, Rule 5, Rule 8, and Rule 9 switch to 
a combined analysis if the designs get larger (data not 
shown) or if the probability that this analysis is truly best 
increases (this probability is equal to the one given for Rule 
2; Table 8). In contrast to our findings for the α-design, 
Rule 4 is not always the best decision rule and, e.g., Rule 5 
or Rule 8 can provide better decisions, as both rules poten-
tially allow to switch to an intra-block analysis.

Discussion

Almost all field experiments involve some kind of block-
ing. As such block effects should be considered in the 
analysis, the decision on whether block effects are taken as 
fixed or random in the analysis is crucial. For BIB designs, 
Graybill and Deal (1959) suggested that inter-block infor-
mation should always be used if r · t − b− t + 1 ≥ 18 and 
b− t = 9 or b− t ≥ 10. Seshadri (1963) and Stein (1966) 
stated that t ≥ 9 or t ≥ 4 is required. Brown and Cohen 
(1974) showed that for four and more blocks inter-block 
information should be used. Our simulation results for 
α-designs (which are not BIB designs) show a comparable 
result when averaged. The results of our simulation study 
indicate that four blocks are sufficient for using inter-block 
information. “Sufficient” means that on average across 
a large number of experiments with the same design and 
with the same variance–covariance structure, the MSED is 
smaller when inter-block information is used. This criterion 
should not be confused with the criterion “good” used, e.g., 
in Bhattacharya (1998), where “good” means that the cho-
sen model is best for each single simulation run. So our aim 
was to select a rule to find the best expected model for a 
new experiment.

For large designs it is obvious that using inter-block infor-
mation is likely to increase precision of treatment estimates 
and their standard errors (Kenward and Roger 1997). For 
smaller designs, Casella (2008) argued that a linear com-
bination of inter-block and intra-block estimates may have 
higher variance due to uncertainty in the weight estimates. 
Stein (1956) proposed that a reasonable number of degrees 
of freedom for the block variance is required. Mead (1988) 
and van Eeuwijk (1995) proposed that 10 degrees of freedom 
are required. All authors assume that for small sample sizes 
or small designs, imprecise variance estimates may result in 
poorer treatment effect estimates from combined analysis 
compared to intra-block analysis. Mead et al. (2012) pro-
posed that inter-block information should not be used unless 
there is enough inter-block information. But not recovering 
inter-block information is equivalent to using extreme values 
for dispersion parameters (i.e., an infinite block variance) Ta
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and is worse than a combined analysis (Robinson 1991). 
Our analyses showed that assuming random block effects 
on average increased the precision for nearly all simulated 
designs even with extreme variance ratios.

Simulated designs

We focussed on small α-designs with four or more blocks 
because they are commonly used in plant breeding. We fur-
ther simulated p-rep designs (Williams et al. 2011, 2014). 
The use of partially replicated designs in multi-environ-
mental experiments is increasing (Smith et al. 2006; Butler 
et al. 2009; Beeck et al. 2010; Hickey et al. 2011; Craw-
ford et al. 2011; Longin et al. 2013; Rebetzke et al. 2014) 
because in series of trials with the same total number of 
plots they are more efficient than replicated designs or aug-
mented designs (Cullis et al. 2006; Möhring et al. 2014). 
In p-rep designs, only replicated treatments give informa-
tion about block effects, if treatment effects are assumed 
as fixed. Therefore, block variance estimates are expected 
to be less precise. In our experience, most designs used 
in plant breeding tend to be at least as large as the ones 
studied in this paper. As the decision for small designs is 
critical, we focussed here on these smaller and more criti-
cal design sizes. For larger designs, inter-block informa-
tion should always be used. There are many alternative 
designs, such as augmented designs (Federer 1956) and 
other resolvable or non-resolvable block and row-column 
designs with constant or variable block size (Shrikhande 
1951; John and Williams 1995). We conjecture that for 
these designs the favourable rules Rule 5 and Rule 8 may 
also give good suggestions.

Series of trials

Our simulations concentrated on single-trial analysis. In 
plant breeding, single-trial analysis is common. If the 
focus is on the analysis of a series, it is also important 
to fit variance parameters for blocks and error to explain 
the variability in each trial. As block and error models can 
differ between trials, it is useful in the joint analysis of a 
series of trials to estimate variances per trial (Möhring and 
Piepho 2009; Piepho et al. 2012). If a two-stage approach 
is used for analysing a series of trials, single-trial analy-
sis forms the first stage. Furthermore, for α-designs, treat-
ments in trials are equally replicated and form complete 
replicates. Therefore, no inter-trial information exists and 
the replicate effect can be taken as fixed. Treatments in 
p-rep designs are not equally replicated per trial, but are 
usually equally replicated across the whole experiment. 
To ensure this property, p-rep designs are usually created 
as a series of trials. Again it is important to model the var-
iability for each trial separately. Therefore, analysis of a Ta
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p-rep design as a series of trials should fit trial-specific 
variances. In summary, we may assume a very similar 
performance of intra-block and combined analysis for 
a series of trials, if trial-specific variances are fitted in a 
joint analysis over trials as compared with analysis of a 
single-trial. For this reason our study was restricted to sin-
gle-trial analyses.

Influence of the block‑to‑error variance ratio

The value of block variance in comparison to the resid-
ual error variance influences the amount of informa-
tion that can be recovered. If the value of the true block 
variance goes to infinity (or is large compared to other 
variances) no inter-block information can be recovered 
and estimates from combined analysis and intra-block 
analysis are identical. Therefore, recovery of informa-
tion improves the estimation of treatment effects when 
block effects are small (Weerakkody 1992). This poten-
tial benefit cannot usually be fully realized, however, 
because variance estimates are estimated and not known. 
In our simulations, we varied the block-to-error variance 
ratio and found that both the probability that inter-block 
information should be used and the probability of a deci-
sion for using inter-block information given by our rules 
increased with increasing ratio. Therefore, the critical 
case for assuming random block effects is the case with 
high block-to-error variance ratio. Throughout this paper 
we, therefore, most often simulated a block-to-error vari-
ance ratio of 5, which is relatively high for practical plant 
breeding trials. Hence, our choice tended to be slightly 
conservative in the sense that if our suggestion favours 
the use of inter-block information, this is probably also 
true for most field trials having smaller ratios.

Distribution of block effects

Our simulations were based on block effects, which were 
simulated as normally distributed random effects with 
trial-specific variances. Therefore, an analysis assuming 
normally distributed random block effects (so Rule 2) will 
be best for large designs or known true variances, as data 
were simulated with this model. Our results furthermore 
show that Rule 4 is best for smaller α-designs and unknown 
variances. In principle, other distributions for block effects 

are possible. We have not investigated this point, but we 
assume that the assumption of an approximate normal dis-
tribution of block effects is reasonable for most practical 
purposes.

Conclusion

For α-designs and a non-zero block variance estimate, 
the use of inter-block information (Rule 4) can be sug-
gested for all simulated designs with four blocks or more. 
Furthermore, for most p-rep designs Rule 4 is best. For 
all simulated p-rep designs trying both analyses and pick-
ing the best model using the Kackar-Harville adjustment 
for non-zero block variance estimates (Rule 5) generally 
works well, too. It can result in too many intra-block 
analyses for small designs to be performed, but it can 
also identify cases where an intra-block analysis is pre-
ferred. Rule 8 shows no clear advantage and the same 
tendency compared to Rule 5. Due to the easy access to 
this procedure via the Kenward-Roger approximation 
with standard statistical software packages, we recom-
mend Rule 5 when deciding whether block effects should 
be taken as fixed or as random, despite its minor imper-
fections for small designs.
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Table 9  Probability of selecting the better model for nine decision rules and scenario 3 (varying number of plots per block) depending on the 
value of the block variance estimate (zero or positive)

All scenarios used an α-design with four blocks, and a block-to-error variance ratio of 5

Scenario Estimate of  
block variance

Block size Number of 
simulations

Probabilities for the nine different rules

1 2 3 4 5 6 7 8 9

3 a Positive 4 4572 0.4563 0.5437 0.4563 0.5437 0.4563 0.4563 0.5763 0.5221 0.4175

0 4 428 0.6238 0.3762 0.3762 0.6238 0.6238 0.6238 0.6238 0.6238 0.6238

3 b Positive 6 4693 0.4673 0.5327 0.4673 0.5327 0.4673 0.4673 0.4693 0.4673 0.4341

0 6 307 0.6319 0.3681 0.3681 0.6319 0.6319 0.6319 0.6319 0.6319 0.6319

3 c Positive 8 4766 0.4824 0.5176 0.4824 0.5176 0.4824 0.4824 0.4824 0.4824 0.4478

0 8 234 0.6325 0.3675 0.3675 0.6325 0.6325 0.6325 0.6325 0.6325 0.6325

3 d Positive 10 4818 0.4819 0.5181 0.4819 0.5181 0.4819 0.4819 0.4819 0.5052 0.4498

0 10 182 0.6703 0.3297 0.3297 0.6703 0.6703 0.6703 0.6703 0.6703 0.6703

3 e Positive 12 4829 0.4813 0.5187 0.4813 0.5187 0.4813 0.5187 0.4813 0.5250 0.4999

0 12 171 0.6024 0.3976 0.3976 0.6024 0.6024 0.3976 0.6024 0.6024 0.6024

Table 10  Probability of selecting intra-block analysis for nine decision rules and scenario 3 (varying number of plots per block) depending on 
the value of the block variance estimate (zero or positive)

All scenarios used an α-design with four blocks and a block-to-error variance ratio of 5
§ These are exact 0s and 1s

Sceanrio Estimate of  
block variance

Block size Number of  
simulations

Probabilities for the nine different rules§

1 2 3 4 5 6 7 8 9

3 a Positive 4 4572 1 0 1 0 1 1 0.4517 0.0755 0.6866

0 4 428 1 0 0 1 1 1 1 1 1

3 b Positive 6 4693 1 0 1 0 1 1 1 0.1048 0.7166

0 6 307 1 0 0 1 1 1 1 1 1

3 c Positive 8 4766 1 0 1 0 1 1 1 0.1244 0.7673

0 8 234 1 0 0 1 1 1 1 1 1

3 d Positive 10 4818 1 0 1 0 1 1 1 0.1598 0.8014

0 10 182 1 0 0 1 1 1 1 1 1

3 e Positive 12 4829 1 0 1 0 1 0 1 0.1814 0.8233

0 12 171 1 0 0 1 1 0 1 1 1
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Table 11  Probability of selecting intra-block analysis for nine decision rules and scenario 4 (varying block-to-error variance ratio) depending 
on the value of the block variance estimate (zero or positive)

All scenarios used an α-design with four blocks of size of 12. Table 3 also looks at scenario 4, but considers the probability of selecting the truly 
better method
§ These are exact 0s and 1s

Scenario Estimate of block 
variance

Ratio of block-to-error 
variance

Number  
of simulations

Probabilities for the nine different rules§

1 2 3 4 5 6 7 8 9

4 a Positive 0.05 497 1 0 1 0 1 1 1 0.0043 0.0385

0 0.05 503 1 0 0 1 1 1 1 1 1

4 b Positive 0.125 571 1 0 1 0 1 1 1 0.0053 0.0543

0 0.125 429 1 0 0 1 1 1 1 1 1

4 c Positive 0.5 797 1 0 1 0 1 1 1 0.0125 0.2673

0 0.5 203 1 0 0 1 1 1 1 1 1

4 d Positive 0.125 886 1 0 1 0 1 1 1 0.0350 0.4966

0 0.125 114 1 0 0 1 1 1 1 1 1

4 e Positive 5 4843 1 0 1 0 1 1 1 0.1814 0.8233

0 5 157 1 0 0 1 1 1 1 1 1

4 f Positive 50 999 1 0 1 0 1 1 1 0.4304 0.9289

0 50 1 1 0 0 1 1 1 1 1 1

Table 12  MSED for nine decision rules and scenario 4 (varying block-to-error variance ratio) depending on the value of the block variance esti-
mate (zero or positive)

All scenarios used an α-design with four blocks of size of 12

Scenario Estimate of  
block variance

Ratio of block- 
to-error variance

Number of 
simulations

Average MSED for the nine different rules

1 2 3 4 5 6 7 8 9

4 a Positive 0.05 497 44.71 41.58 44.71 41.58 44.71 44.71 44.71 41.59 41.69

0 0.05 503 41.29 40.60 40.60 41.29 41.29 41.29 41.29 41.29 41.29

4 b Positive 0.125 571 44.65 42.64 44.65 42.64 44.65 44.65 44.65 42.65 42.76

0 0.125 429 41.35 40.98 40.98 41.35 41.35 41.35 41.35 41.35 41.35

4 c Positive 0.5 797 43.83 43.03 43.83 43.03 43.83 43.83 43.83 43.06 43.39

0 0.5 203 42.39 43.26 43.26 42.39 42.39 42.39 42.39 42.39 42.39

4 d Positive 1.25 886 43.58 43.55 43.58 43.55 43.58 43.58 43.58 43.57 43.78

0 1.25 114 42.38 43.95 43.95 42.38 42.38 42.38 42.38 42.38 42.38

4 e Positive 5 4829 43.78 43.99 43.78 43.99 43.78 43.78 43.78 44.00 44.01

0 5 171 43.92 45.96 45.96 43.92 43.92 43.92 43.92 43.92 43.92

4 f Positive 50 999 43.89 43.93 43.89 43.93 43.89 43.89 43.89 43.91 43.88

0 50 1 42.95 48.35 48.35 42.95 42.95 42.95 42.95 42.95 42.95
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